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not  yet  been evaluated in detail  (SSrum, 1943); 
whether  it is tha t  of diopside or one closely related 
to it  needs still to be determined.  There is l i t t le doubt,  
however, tha t  the coordination of vanad ium is tetra- 
hedral,  and chains of the formula  (V03) n- are formed 
by sharing corners. The t ransi t ion from the 7 phase 
appears to result  from the disruption of the closely 
coordinated sheets into these isolated units  which 
will require addit ional  alkali  meta l  ions, not  neces- 
sarily in  a fixed proportion, to link together in the 
diopside grouping. 

The writer desires to thank  Dr B. Dawson for help- 
ful  discussion. 
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A unified algebraic approach to the phase problem is described, which, under certain limitations, 
yields explicit formulas for determining the sign of any structure factor. Some of these formulas 
correspond to those previously derived and throw additional light on them, while others provide a 
useful addendum to these relations. The unified algebraic approach provides, in general, a basis 
for deriving phase-determining relations in all the space groups. 

1. I n t r o d u c t i o n  

Probabi l i ty  methods utilizing the concept of the joint  
dis t r ibut ion yield formulas which lead to procedures 
for phase determinat ion in the centrosymmetr ic  space 
groups ( H a u p t m a n  & Karle,  1953 (Monograph I)), 
and in those non-centrosymmetr ic  space groups (Karle 
& Haup tman ,  1956) which are characterized by having 
all components of the seminvar ian t  modulus (Haupt- 
m a n  & Karle,  1956) equal  to two. For certain structure 
seminvar iants  these methods also prove useful in 
some of the remaining space groups. However we have 
been unable,  by  means  of the joint  probabi l i ty  distri- 
bution, to obtain formulas for the remaining structure 

seminvariants .  We have therefore found it  necessary 
to a t tack the problem from a different point  of view 
which complements  the probabi l i ty  approach and  
throws addit ional  light on the probabi l i ty  formulas  
a l ready obtained. 

The present algebraic approach is based on a for- 
mula  for the product  of an arbi t rary  number  of suit- 
ably  normalized structure factors. An algebraic ap- 
proach has been foreshadowed by  Hughes (1953) and  
by Bullough & Cruickshank (1955) in their  derivations 
of certain phase-determining formulas. Our present 
approach is a unified one in tha t  it can be applied to 
all the space groups, non-centrosymmetr ic  as well as 
centrosymmetric .  In  a forthcoming publicat ion (Karle 
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& Hauptman,  1957) the application to space group P1 
will be described in detail. In  addition, not only does 
the  method corroborate the probability formulas al- 
ready obtained, but it leads to many new and im- 
por tant  relationships in these same space groups. I t  
is also shown by these algebraic methods that,  under 
special circumstances, the results of the probability 
theory are not merely probably correct but are in fact 
exactly true. At the same time these methods also 
clearly show to what extent the simple phase-deter- 
mining formulas might be adversely affected by special 
arrangements of the atoms in any space group. 

The formulas to be derived in this paper have exact 
validity only in the case tha t  the structure consists 
of N identical point atoms. This restriction, however, 
is easily removed. In fact the joint distribution will 
play an important  role in modifying these relationships 
for the case of unequal atoms. However, we defer the 
t reatment  of unequal atoms and special positions to 
forthcoming publications. This permits the presenta- 
tion of the present results in their simplest forms. 

A UI~IFIED ALGEBRAIC APPROACH TO TI~E PHASE PROBLEM. I 

N 
EhEh  = 

1 l 
÷N-i-~ E h + h 1 ÷ 2 ~  Eh--h I • 

2. P h a s e - d e t e r m i n i n g  f o r m u l a s  

We list here for convenience all formulas derived in 
this paper which will be seen to include and supple- 
ment those described in our Monograph I. 

E2h = --N3/2((E~--l)(E2h+k--l)>k÷2N1/2(E~--l). (2"1) 

N3/2 
E,,EhIEh+,,, = ~ ( (E~,- 1) (E2h,_{_k - 1) (E2h+h,+k-- 1 )>k 

1 2 2 2 +-~f~ (Eh +E,,I +E,,+,,1-2) 

1 
+ ~ (E,, E,,+ 2,,1 + E,,,E,,I+2h + E,,+,,1E,,_,,,) 

1 
i~  (E2h÷E2hl÷E2(h+hD)' h'  -- h or h 1. (2.2) 

N3/2 
--  8 ((E~--l)(E~+k--1)(E~hTk--1)>k 

1 1 1 
÷ ~  ( 2E2h ÷ E2h-- 2 ) ÷ - ~  Eh E3h ---~ E4h. (2-2a) 

EhEhl 

E h E h  1 

E2h = 

N 
= ~- <Eh+ k E h , ± k ( E  ~ -  1)>k 

3 
+ ~  (Eh+hl + E,,_hl) . (2"4) 

N 
= ~ (Eh+kEhl+k (Ek--1)>k 

1 1 
÷ 2 ~  Eh+hl+~-]7~ Eh--hl. (2.4a) 

(2-4b) 

2 E h -- _]V (Eh+2k (Eh+ k -  1 )>k. (2.3a) 

E h = N 1 / 2 ( E k E h + k ~ k .  (2.5) 

<E~> k -~ 1 .  (2-5a) 

Of these formulas, (2.1) has been previously derived 
by Cochran (1954) and (2.5) by Hughes (1953) (al- 
though the latter was ~oreshadowed by Sayrc (1952)). 
Equation (2.5a) is the case h = 0 of (2.5). Equation 
(2-3) has already been used, but not in this exact form, 
in our Monograph I (1953). The remaining equations 
are new, although Vaughan (1956) has obtained, by 
means of the Patterson superposition method, an ap- 
proximate formula which resembles (2-2). Equation 
(2.2a) is obtained from (2.2) by setting h 1 = h. 
Equation (2-4) is an obvious consequence of (2.4a) 
and (2-4b), while (2-3) is derivable from (2.3a). I t  is 
to be emphasized that,  under hypotheses to be stated, 
these formulas are exact, not merely probable, rela- 
tionships among the structure factors. 

3. Analysis  

3.1. The preliminary formulas 
Wc start  with the definition of the normalized 

structure factor E h for P1 (Monograph I, 1953, equa- 
tion (3.14)).* If there are N point atoms per unit cell 
with no atom at a special position, this reduces to 

2 _~12 
Eh = ~]21--~1 COS 2~h • r ] ,  (3-01) 

where rj is the position vector of the j t h  atom. Equa- 
tion (3-01) is the case q -- 1 of the more general defini- 
tion 

2 q .a,/2 q 
= .~. H cos 27eh~. rj~. (3.02) Ehlh2...hq Nq/2 ~1=~]'2 .. -~]q i=1 

1 

Employing (3.01) to compute EhlEh2 and EhlEh2Eh3 , 
we readily derive in turn the two preliminary formulas 

1 
Ehlh2 -~ EhlEh~- ~ (Ehl+h2÷Ehl_h2) , (3"03) 

* In practice El, is obtained from F h by means of Eh ---- 

/( Fh f , where 2' h is the crystal structure factor and Y 
fyh is the atomic scattering factor. 
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1 
EM h2 h3 ---- Ehl  Eh2 Eh 3 - ~  (Eh1+h 2 Eh 3 + Ehx--h 2 Eh3 

+ Ehl+h3 Eh2 + Ehl--h3 Eh2 + Eh2+ h3 Ehl + Eh2--h3 Ehx) 
2 

+ N (Ehl+h2+h3 + ~hl+h2--h3 + Ehl--h2Th3 + Ehl--h2--h 8) • 

(3.04) 

8 ~'/2 
, ~  {[cos 2z (h~+h~)  • r i  R 3 ----/-~ j#j,#i,, 

1 +COS 27~(ha-h2) • ri] cos 2zhn  • ri, 

× cos 2 ~ h  4 • r~,,+5 s imilar  t e r m s } .  (3.15) 

N e x t  we specialize (3-06) by  means  of the  substi-  
t u t i ons  

3-2. The f inal  formulas 

We prove  in detM1 only  the  t yp i ca l  fo rmula  (2.4a) 
and  mere ly  ind ica te  the  proofs of the  r ema in ing  equa-  
t ions.  

F rom (3.01) we f ind  

4 16 ~v/2 
1-I Eh i = N--- 2 ~ cos 2 ~ h  a • r j  cos 2zh2 • rj, 
i = i  J , i ' , J " , f ' "  

1 

× c o s  2 ~ z h  a • r f ,  cos 27~h 4 • ri,,, 

where 

16 

16 
R2°= - ~  

16 R~=~ 

16 
R 3 = ~-~ 

= R I + R 2 + R 2 + R a + R  4 , 

(3.05) 

(3.06) 

~/2 
/~" cos 2 ~ h  1 • r~ cos 2~h~ • r~ cos 2 ~ h  a • r~ *~ 

xcos  2 ~ h  4- r~, (3.07) 

~¥/2 
{cos 2:~h 1 • r i cos 2 ~ h  2 • r i cos 2 ~ h  a • r i 

j+j, 
× cOS 2 ~ h  4 • r i , + 3  s imi lar  t e rms} ,  (3.08) 

-~/2 
Z {cos 2 ~ h  1 • r j  cos 2~h~. • r j  cos 2 ~ h  a • rj, 

1 ×cos 2 ~ h  4 • r~,+2 s imilar  germs}, (3"09) 
i 

.¥/2 
.~: {cos 2 ~ h  1 • re c o s  2 ~ h  2 • r j  cos 2 ~ h  a • re, 

j=bj'4=j" 
1 

× cos 2 ~ h  4 • r y , + 5  s imi lar  t e rms} ,  (3.10) 

16 ~/2 
R 4 = ~ ~ :  cos 2 ~ h  1 • r j  c o s  2 ~ h  2 • r j ,  

j#.j '4=j"--bj'" 
I 

×cos 2 ~ h  a • rj,, cos 2 ~ h  4 • r j  .... (3.11) 

By  e l e m e n t a r y  t r i gonomet r i c  m a n i p u l a t i o n s  i t  is 
easi ly verif ied t h a t  

2 2v/2 
R 1 = ~-~ ~ {cos 2 ~ ( h l + h 2 + h 3 + h 4 )  • r j + . . .  

i=1 
+ cos 27e (h 1 - h  2 - h  a - h a )  • r j } ,  (3.12) 

4 ~v/2 
R 2 -- ~-~ ~ {[COS 27~(hl+he+h3)  • r j + . . .  

j+j" 
1 +cos 2 y ~ ( h l - h 2 - h 3 )  • r]] cos 2 ~ h  4 • r], 

+ 3 s imi lar  t e r m s } ,  (3.13) 

4 ,v/.) 
R~ = N-2 i#J'~' {[cos 2xe(hl+h2) • r j + c o s  2 ~ ( h l - h 2 )  . ri] 

1 × [cos 2~ (ha+ha)  • r i ,+cos  2~ (ha -h4 )  • ri, ] 

4 2  s imi lar  t e r m s } ,  (3.14) 

h 1 -+ h - k ,  h 2 -+ h i - k ,  h 3 - +  k, h 4 - >  k ,  (3"16) 

and  average  bo th  sides over  all  vectors  k. :By im- 
posing the  condi t ion  t h a t  no four  d i f ferent  vectors  
r# rj,, ri,,, ry,, in  the  a symmet r i c  un i t  be r a t i ona l l y  
dependen t ,*  i.e. t h a t  the re  exist  no four  in tegers  
mi, i = 1, 2, 3, 4, no t  all  zero, such t h a t  

mlrj+m~rz+m3r] , ,+m4r ~ . . . .  r ,  (3.17) 

where  the  th ree  componen t s  of r are integers,  i t  is 
r ead i ly  ver i f ied t h a t  

(R2>k = (Ra>k = (R4>k = 0 .  (3-18) 

F u r t h e r m o r e ,  i t  is easi ly  seen t h a t  

2 ~/2 
<RI> k - ~ • ~cos 27 t (h+ha ) .  r j +  2 cos 2 ~ r ( h - h l )  • rj} , 

2¢~i= 1" 
(3.19) 

and  

4 ~v/2 
' = ~ (cos 27~(h i -h2 ) .  r i (R2>k ~-~ j , j ,  

1 
+ 2  cos 2 z h  • r / c o s  2 z h l  • r/ ,}.  (3.20) 

Subs t i t u t i ng  these values of <R1)k, <Re>k, (R~>k, <Ra)k, 
<Ra> k in to  (3.06), employ ing  (3.01) and  (3.03), and  
solving for EaEav  we f ind  

N 2 
Eh Ehl =- -~ ( E h - k E h l - k E k > k  

1 N - 2  
+2--N-~2 Ea+"I 2Na/2 Eh_hl .  (3"21) 

Next ,  we use (2.5), an  i m m e d i a t e  consequence  of 
(3.03), to  ob ta in  

<Eh_kEhl_k  (E2k- 1 )>k 

---- <Eh-k Ehl-k E~>k--~-~--l/2 Eh-ha . (3.22) 

F ina l ly ,  subs t i t u t ing  f rom (3-22) in to  (3.21) and  re- 
p lac ing k by  - k ,  we ob ta in  (2-4a). 

I n  order  to  prove  (2-4b) we m a k e  use of the  sub- 
s t i tu t ions  

h 1 - +  h + k ,  h 2 ---> h i - k ,  h 3 ---> k, h 4 -+ k ,  (3"23) 

* This condition may be replaced by the less stringent 
requirement that  no two position vectors in the asymmetric 
unit and no two interatoraic vectors in the whole unit cell 
be rationally dependent. 
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instead of (3-16), in (3.06) and proceed as before. 
Equation (2.1) is the special case h = h 1 of (2.4a). 

6 

In order to derive (2.2) we expand H Eh i as in 
i=1 

(3"05)-(3"15) and then specialize the result by means 
of the substitutions 

h 1 - ~ k ,  h~. - ~ k ,  h a --> h l + k  , h a -~ h l + k  , 

h 5 -+ h l + h 2 + k ,  h 6 -+ h l + h 2 + k .  (3"24) 

If we impose the condition tha t  no six different posi- 
tion vectors be rationally dependent, average over k, 
and make use of (3.01), (3.03), (3.04), and (2.1), we 
finally obtain (2.2) after a somewhat lengthy analysis 
similar to (3.18)-(3.22). 

Finally, (2.3a) is derivable by a similar analysis 

from the product H Ehi. 
i=l 

4. A p p l i c a t i o n s  

A procedure for phase determination has already been 
described in our Monograph I. The formulas here 
derived are useful in supplementing this procedure in 
two important  ways. First, additional formulas are 
now available for obtaining the signs of the E2h'S 
from intensities alone. Secondly, once the sign of an 
Eh, which is linearly independent modulo 2, has been 
arbitrarily specified, these formulas yield the signs of 
the E's which are linearly dependent modulo 2 on E h. 

While in principle (2.1) yields the sign of Egh, as 
a practical mat ter  (2"2a) is likely to be more useful. 
Furthermore, once the signs of several E2h'S have 
been thus determined, (2.2), (2.3), (2.4), (2.4a), or 
(2.4b) may be used to obtain the signs of other E2h'S. 

Next, once the sign of an Eh, linea~y independent 
modulo 2, has been arbitrarily specified, then (2.2), 
(2.4), (2-4a), or (2.4b) may be used to determine the 
signs of the remaining E's which are linearly dependent 
modulo 2 on Eh. Naturally, in applying these formulas, 
use is made of the signs of the E2h's previously deter- 
mined. In particular, taking h -  h 1 (mod 2) in (2.4), 
(2.4a), and (2.4b), k ranges over all vectors such that  
k - - h ~ h  l ( m o d 2 ) .  Of course, in order to fix the 
origin uniquely, the signs of three structure factors, 
constituting a linearly independent set modulo 2 
(Monograph I), must be specified arbitrarily. 

Finally, as in our Monograph I, once a sufficient 
number of signs has been thus determined, (2.3a) and 
(2"5) are u~ed to determine the remaining ~igns. 

5. C o n c l u d i n g ,  r e m a r k s  

Although the averages appearing in the formulas of 
§ 2 are to be taken over all vectors k, it is clear tha t  

in practice these averages must be computed from a 
finite sample. Naturally,  the question concerning the 
reliability of the means so computed is important  and 
merits further study. In this way standards of sig- 
nificance may be set up and suitable levels of rejection 
can be established. 

In this paper the algebraic method has been applied 
to products up to the sixth order. However, it is 
apparent that  the same procedures may be applied 
to higher-order products and may conceivably lead to 
more powerful formulas. For example a formula for 
E~h may be contained within the tenth-order product. 

Except for (2.2) and (2.2a), which require that  no 
six position vectors be rationally dependent, all our 
formulas have exact validity provided tha t  no four 
position vectors be rationally dependent (see (3-17)). 
Even if this requirement is only approximately ful- 
filled it is clear that  these formulas have approximate 
validity and are useful for determining phases. I t  
should be noted that  th( requirement tha t  no four 
position vectors be rationally dependent implies that  
no two interatomic vectors coincide and that  no atom 
have three rational coordinates, in particular that  no 
atom occupy a special position. 

Our formulas imply that  a structure consisting of 
N identical point atoms is uniquely determined by the 
magnitudes of its structure factors provided that  no 
four position vectors are rationally dependent. In short 
we have proven the following: 

THEOREM.--A centrosymmetric structure consisting 
of N identical point atoms per unit cell and such that  
no four position vectors in the asymmetric unit are 
rationally dependent has no centrosymmetric homo- 
metric mate (Patterson, 1944). 

R e f e r e n c e s  

BULLOUGH, R . K .  & CRUICKSHANK, D . W . J .  (1955). 
Acta Cryst. 8, 29. 

COCHRAN, W. (1954). Acta Cryst. 7, 581. 
HAUPTMAN, H. & KARLE, J. (1953). Solution of the Phase 

Problem. I. The Centrosymmetric Crystal. American 
Crystallographic Association Monograph No. 3. Wil- 
mington: The Letter Shop. 

HAUPTMAN, H. & KARLE, J. (1956). Acta Cryst. 9, 45. 
HUGHES, E.W. (1953). Acta Cryst. 6, 871. 
KAI~LE, J. & I4AVP~MA~, H. {1956). Acta Cryst. 9, 635. 
KARLE, J. & HAUPTMAN, H. (1957). In preparation. 
PATTERSO~¢, A.L. (1944). Phys. Rev. 64, 195. 
SAYRE, D. {1952). Acta Cryst. 5, 60. 
VAVGHAN, P.A. (1956). American Crystallographic As- 

sociation Annual Meeting, French Lick, Indiana. 


